
Yasser F. O. Mohammad

REMINDER 1: Different Uses of
Encryption

REMINDER: One Way Hash
Functions
a) Only we know k

 Most conventional

b) Uses Public Keys only
 Offers Nonrepudiation
 No key distribution

c) Only we know the secret
 No encryption
 Used in HMAC adopted by IP

security

 Why No Encryption?
1. Encryption is slow
2. Encryption is expensive
3. Encryption is optimized for large
4. Patents & export control

REMINDER 3: Modern Hash
Functions
 SHA-1 (self read the algorithm)

 Maximum input is 264

 Digest size = 160 bits
 Block size is 512 or 1024 bits

Public Key Encryption

Public vs. Shared Key

Uses of Public Key Encryption
 Encryption/Decryption

 Digital Signature

 Shared-Key Exchange

Public Key for Authentication

Public Key for Confident. + Auth.

Applications of Public Key Systems

Requirements of Public Key Systems
 Easy to generate key pairs

 Easy to encrypt and decrypt

 Knowing the public key we cannot guess the private
key

 Knowing a cipher and the public key we cannot get the
plain text

 [Optional] the two keys can be applied in either order

RSA
 Developed in 1977

 By

 Ron Rivest

 Adi Shamir

 Len Adelman

 Plain and ciphertexts are numbers between 0 and 2n –
1 (usually n=1024)

 General Purpose Public Key system

 Depends on the difficulty to factorize large numbers

RSA Algorithms

Example
 p=17, q=11
 n=pq=187
 Φ(n)=(p-1)*(q-1)=160
 e is prime less than Φ(n) and GCD(Φ(n),e)=1 (e.g. 7)
 d=e-1mod Φ(n)=23 (23*7=161)

How to Break RSA?
1. Factorize n = Find p and q.

2. Find Φ(n)=(p-1)*(q-1)

3. Find d=e-1 mod Φ(n)

Now you have the private key!!!!

The only problem is that it is mathematically very
difficult to factorize n.

Diffie-Hellman
 Published by Diffie and Hellman in 1976

 First Public Key algorithm

 Can be used only for key exchange

 Depends on the difficulty to calculate discrete
logarithms

What is a discrete logarithm?
 a is a primitive root of a prime number p iff its powers

generate all numbers from 1 to p-1.
 equal 1, 2, ….,

p-1 in some permutation.

 For every integer b < p and a primitive root a of the prim p
there exist a unique number i where:
b = ai mod p where 0 ≤ i ≤ (p-1)

 Discrete logarithm dloga,p(b)=i where b = ai mod p

 This is difficult and slow!!

papapapa p mod , , mod , mod , mod 132 

Diffie-Hellman
 The point is that users A

and B will be able to
calculate the secret key
using only:
1. His private key

2. Other’s public key

 Eve needs to do a
discrete logarithm
because she does not
have any of the private
keys.

Numeric example
 q=71

 α=7

 XA=5

 XB=12

 YA=75mod71=51

 YB=712mod71=4

 K=45mod71=5112mod71=30

Why it works?

Key exchange using Diffie-Hellman

 Can be broken using Man-in-the-Middle Attack

Man-in-the-Middle Attack

2

1

1

2

1 1

2

1

2 2

:

:

: mod

: mod

:

:

: mod

: mod

D

B

D

A

A

D

X

A

X

D

B

D

X

B

X

D

A E Y

E B Y

E K Y q

B K Y q

B E Y

E A Y

E K Y q

A K Y q





  
 

  





  
 

  

Now E has K1 shared with B and
K2 shared with A

A and B think that they share the key
with each other

 

 

 MKEBE

or

MKEBE

MKEEA







;:

;:

;:

1

1

2

Other Public Key systems
 Digital Signature Standard (DSS)

 Only for signature

 Elliptic Curve Cryptography (ECC)

 General Purpose Public Key Encryption Algorithm

 More difficult to understand than RSA

 Provides similar security for smaller key size

 Not tested as much as RSA

Digital Signatures
1. Encrypt Whole message
 C=Ep(PrA:M)

 C and M must be kept to prove the signature

 C provides NO confidentiality. Why?

2. Encrypt an authenticator
 C=Ep(PrA:H(M))

 Only M and H(M) need to be kept

 H used is usually SHA-1

 No confidentiality. Why?

Distribution of Public Keys
 Public Key Certificates

 CA=Certification Authority

 CA’s sign public keys of
users with its private key

 X.509 standard

 Used in SSL, Secure
Electronic Transaction
(SET), S/MIME

Distribution of Shared Keys
1. Use Diffie-Hellman

2. Use Public Key Encryption (Like RSA or ECC)

   kKEMkEBA pub

Bp ,,: 

Can you see any problem in this exchange in terms of authentication?

