- LZ
W

CS ??? Computer Security

User Authentication

Mohammad

REMINDER 1:

Fow
= Ted

MMiaike Adce

Adlzce"s public

blic Key Encryption

Transrmatio<d
<aphertext

T

Aldsce’s pravate
ey

kew

Encrvption alsonthm
e e . RSA>

Plaintext
input

&’

Bob's pravate

{a2) Encrypizon

A ransrrattaod
ciphertext

&

Doecryption alsorithm
{reverse Oof encry piion
alsorithin?

Jow v
= Tea

Rl
Bob’s puablic
Key

kKew

Encryption afsorithmnm
fe.e.. RSA>

o>

Plaintext
ourpuat

Deocryption algorithim
{reverse of encryplion
alsorithin?

Authenticaiion

Plaintex1
ouarpual

P R

REMINDER 2: RSA Algorithms

"REMINDER3:

Diffie-Hellman

The point is that users A
and B will be able to
calculate the secret key
using only:

1. His private key

>. Other’s public key

Eve needs to do a
discrete logarithm
because she does not
have any of the private
keys.

Global Public Elements

4] prime number

@ a < g and a a primitive root of g

User A Key Generation

Select private X, Xi<gq

Calculate public ¥, ¥, = aamod g

User B Key Generation
Select private Xy Xpg<gq

Calculate public ¥y Yy = a’Bmod g

Calculation of Secret Key by User A

K= {Yﬁjx‘ﬂ' mod i

Calculation of Secret Key by User B

K= I[Y,l]lx-'r mod g

_ REMINDER 4: Distri

Keys

* Public Key Certificates
* CA=Certification Authority

* CA’s sign public keys of |

users with its private key
* X.509 standard

e Used in
Electronic
(SET), S/MIME

SSL, Secure
Transaction

ion of Public

Unsigned certificate:
contains user 1D,
user's public key Generate hash
code of unsigned
certificate

7=y Encrypt hash code

e PR & a

B | with CA's private key
./ toform signature

X 0 W X X K]
20%6%%% %%

Signed certificate:
Recipient can verify
signature using CA's
public key.

Authentication

Message Authentication
e Who generated this message?

User Authentication
e Who am I dealing with?

/ T
User Authentication

Basis of most other security services
e Access Control
e User Accountability
* etc

Veritying the identity claimed by some entity

'Two steps:
e Identification: presenting credentials
e Verification: binding entity to ID

How to authentication a user?

Something you know
e Passwords, passphrases
Something you have
e Smart cards
Something you are (static biometrics)
e Fingerprint
e Retina recognition
* etc
Something you do (dynamic biometrics)
e Signature
e Voice pattern
* etc

e
DISCUSSION POINT

What are the problems of each of these methods:
e Something you know

e Something you have
e Something you are

e Something you do

Password based authentication
Simplest Approach

e The system challenges the user
- S2U: C

e User presents a function of the password and challenge
information
. USS: F(P.C)

e The system processes the reply to confirm the identity of
the user (ID)

The ID can then be used for other security purposes

// VT e
Password Vulnerabilities

Offline dictionary attack
e Keep the password file secure
Specific account attack
e Limit the number of failed attempts
e Intrusion detection
Popular password attack
e Do not use popular passwords
e Account lockout
Password guessing against single user
e Training not to use your name as your password!!!

// e LN
Password Vulnerabilities 2

Workstation hijacking

e Do not leave your session

e Frequent checking
Exploiting user mistakes

e Do not write passwords , do not do mistakes!!
Exploiting multiple password use

e Use a different password for every occasion
Electronic monitoring

e Do not transfer passwords

How not to store the password?

Uses of salt: T —
Prevents duplicate password)(_l 1—)[
crypt 3) |« load

discovery -
In the same pass file
In different machines R
Increases difficulty of offline N
attacl<s Userid salt output)
‘ ' assWOrd
= "
The hashing MUST BE
SLOWWWWWW!! 0
encrypted password » compare

(b) Verifying a password

/ R

UNIX scheme

Original scheme
e 8 character password = 56-bit key

e 12-bit salt used to modify DES encryption into a one-way
hash function

e Zero repeatedly encrypted 25 times

e Output translated to 11 character sequence
Now regarded as insecure

 e.g. supercomputer, 50 million tests, 8o min

* $10,000 can do the same with a uniprocessor system in
few months

sometimes still used for compatibility

Newer Implementations

Many systems now use MDs5
e with 48-bit salt
e password length is unlimited
¢ is hashed with 1000 times inner loop
e produces 128-bit hash

OpenBSD uses Blowfish block cipher based hash
algorithm called Berypt

e uses 128-bit salt to create 192-bit hash value

p

/

Cracking Passwords

Dictionary attacks

 Try each word then obvious variants in large dictionary
against hash in password file

Rainbow table attacks
e Precompute tables of hash values for all salts

e e.g. 1.4GB table cracks 99.9% of alphanumeric
Windows passwords in 13.8 secs

* Not feasible If larger salt values used

Problems with password choice

Short passwords
e 6% of users use less than 4 chars passwords if allowed

Guessable passwords
e 24.2% of passwords used are easily guessable

How to protect password files?

Use a separate shadow file
Deny access except for privileged users

FOR CRACKERS: How to get the pass word file??
e Exploit O/S bug
e Accident with permissions making it readable
e Users with same password on other systems
e Unprotected backup media
e Unprotected network traffic

How to complicate passwords?

User education
e Do not use your birthday as your password?
Computer-generated passwords
e Needs to be memorable
Reactive password checking
e Periodically try to crack yourself
Proactive password checking

e Check upon password registration

Proactive Password Checking

Simple rules
e 8+ characters
e Upper, lower, numeric, punctuation marks
e Change periodically

Password Cracker
e Needs a large dictionary (30MB at least!!!!)
e Requires sometime to do the crack

 In general EVE will have more time to crack the system

Proactive Password Checking 2
Hidden Markov Models ‘“’('\

e Learn a HMM from a _
dictionary t \\

e Reject passwords with high os| 1o ‘b
probability of being generated / QU.J
from this dictionary C /

e Usually uses bigrams as basic

Ma(i{ab,¢), T, 1) where
units and trigrams to find [0 05 0]
. T« 02 04 04
frequencies 10 00 00

2., string probably from this hnguage: abbeacaba
e.g., string probably not from this language: saccchann

Proactive Password Checking 2

Bloom Filter
e Uses k independent hash functions H; each gives a value from o to N-1

Initialization:
« Calculate H; for all words in the dictionary
- Initialize HashTbl of size N to all zeros

« H,(D;)=j = HashTbl[j]=1 .

Checking:
« Calculate H; for it B S
» Reject it if all HashTbl[H,(P)]==1]

00 = 4 hash functions

Prifalse positive]

Has false positives

6 hash functions

k 4
kD/N 0001 -
P(false positive)= (1 =)

0 5 10 15

Ratio of hash table size (bits) to dictionary size (words)

Token Based Authentication

* Problems:
e Special reader
e Loss
o User dissatisfaction!!!

p

o

\\

Types of cards usually used

Contactless

Radio antenna embedded inside

Card Type Defining Feature Example
Embossed Raised characters only, on front Old credit card
Magnetic stripe Magnetic bar on back, characters on front | Bank card
Memory Electronic memory inside Prepaid phone card
Smart Electronic memory and processor inside Biometric ID card

Contact Electrical contacts exposed on surface

AT S
iR R AR R G R R R R R R R B ST

5.6 mm

typical chip layout

/ \\
Authentication Protocols
Static

e Something stored in the token

Dynamic Password Generator
 Periodically generate passwords
e Must be synchronized with the Computer

Challenge Response
e System—>Token: Challenge
e Token—>System: Response

— h*§§\\\§§<>\\‘ﬂ//éy//////%{/)

Biometric Authentication

Both Static and Dynamic

Hand Ins
, . Retina
§| Signature

Voice

Accuracy

/\/

General Operation

* Enrollment

e Verification

e Identification

Name (PIN)
. | Biometric | Feature
sensor "] extractor »
User interface
{a) Enrollment
Name (PIN)
o | Biometric | Feature
Sensor 7| extractor
¥
i Feature
User interface true/false «
matcher One template
(b) Verification
{‘
Biometric| | Feature
Sensor 7| extractor
¥
User interface user's identity or Feature
user unidentified " matcher N templates
(c) Identification

Life is not easy

After some limit
e To reduce false negatives you increase false positives

Probability
density function
&
decision
. threshold ()
imposter . profile of
profile i genuine user
false
nonmatch false
possible match

possible

| ' | >

average matching average matching Matching score (s)

value of imposter value of genuine user

Characteristic Curve

@ Face (C) Fingerprint B ‘oice <> Hand
1005

’ Iris

B
bl
= 10% t\ \
=1 e
3 ot Y, ra
E
S §
=
1%
0.1%
0.0001% 0.001% 001% 0.1% 1% 10%

false match rate

100%

P E—— s
What do you care about

Finding terrorists in airports using vision
e False negatives
e A false positive just causes one extra check by the officer

e A false negative may cause you hundreds of lives, an airplane (and
your job)

Access control for employees
e False positives
A false negative just causes another retrial or officer attention
* A false positive may cause you company secrets (and your job)

/
e Y

Remote User Authentication

Passwords must never be transferred in clear

Client Transmission Host Client Transmission Host
U, user U— UV, usetr IJ—
random rmmber r, rTandom numiber
< {r.h(), 10} h0), £0), functi < {r. b, 0} RO, £0, functi
P—=W
P password . password fo .
r', retum of r i’ Py = passcode via token fr', BW) —
r.retumof r
i £, hiP) = i £, h(W) =
< yesmo r, BP(LY) < yesno £(r, B{W(L))
then yes else no then yes else no

(a) Protocol for a password (b) Protocol for a token

Client Transmission Host Client Transmission Haost
L= U— I user r—
r, Iandom number
r, Tandom number x,
« {r,EQ} E(), function < {r.x EQ} random sequence
E(), fomction
B' — BT biometric — e — -
D' biometric device | E(r,D,BT)— | EEC- P BT) = B.x' =BSG) | g pogyy - {rc:hmt;;ﬂ
r' retum of r (r', P, BT) r'.retum of r 5 o B0
ifr'=rand D=0 ifr=randx'=x
< yesno and BT = BT(L)) < yesino and B = (1)
then yes else no then yes else no

{c) Protocol for static biometric {d) Protocol for dynamic biometric

 —

Security Issues

client attacks

*No access to server
*host attacks

*Try to get to the DB
*Eavesdropping

e[isten to transmissions
*Replay

*Replay
*Trojan horse

*Appear as a nice guy
*denial-of-service

/
Attacks Authenticators Examples Typical defenses
Password Guessing, exhaustive Large enfropy; limited
search attempts
Token Exhaustive search Large enfropy; limited
Client attack attempts, theft of object
Tequires presence
Biometric False match Large enfropy; limited
attempts
Password Plaintext theft, Hashing; large entropy;
dictionary/exhanstive protection of password
search database
Host attack Token Passcode theft Same as password; 1-time
passcode
Biometric Template theft Capture device
anthentieation; challenge
Iesponse
Password "Shoulder surfing" User diligence to keep secret;
administrator diligence to
quickly revoke compromised
passwords; multifactor
Eavesdropping, authentication
theft, and Token Theft, counterfeiting Multifactor authentication;
copying hardware tamper resistant/evident
token
Biomefrie Copying (spoofing) Copy detection at capture
biometric device and eapture device
authentication
Password Replay stolen password | Challenge-response protocol
Iesponse
Token Replay stolen passcode | Challenge-respense protocol;
Replay Tesponse 1-time passco
Biomefrie Replay stolen biometric Copy detection at capture
template response device and capture device

authentication via challenge-
response protocol

Password, token, Installation of rogue Authentication of client or
Trojan horse biometric client or capture device | capture device within trusted
Security perimeter
Denial of Password, token, Lockout by multiple Multifactor with token

service

blometric

failed authentications

REST of Chapter

* SELF READ

Sheet 3

Text book Problems

e Review Questions:
o All

e Problems:
« MUST: 1,3,5,7,10
« OPTIONAL: rest of them

In the next episode!!

Access Control

How to prevent them from getting what they want, if
you do not want them to get it

