EE327 Digital Signal Processing Overview Vasser F. O. Mohammad 2010.2.19

Why are you here?

- 1. Learn DSP
- 2. Pass exams
- 3. Have some time to other subjects
- **4**. Have fun!!

Your final goal

Find the optimal balance between these four CONFLICTING goals

Teaching Team

- Instructor: Yasser F. O. Mohammad
 - Computers and Systems section (Intelligent Robotics)
 - Email: yasserfarouk@gmail.com
 - Web: http://www.ii.ist.i.kyoto-u.ac.jp/~yasser
- TA: Eng. Mohammad Farrag
- Course Website:
 - www.ii.ist.i.kyoto-u.ac.jp/~yasser/courses/DSP3rdPower
- Google Group:
 - Email: au_dsp_3p@googlegroups.com
 - Web: http://groups.google.com/group/au_dsp_3p

Course Syllabus

- Overview & application of DSP
- Discrete time signals & systems
- The discrete Fourier transform.
- The FFT algorithm
- The Z- transform
- Digital filters
- Design of FIR & IIR filters
- Realization of digital filters.

Where does it fit in your field

- DSP is a core course for communications engineer.
- DSP is an essential course for a computer engineer.
- DSP is an important practical course for a power engineer

Course Philosophy

- Maximize practical engineering sense
- Maximize field exposure
- Minimize complex mathematics

You need to USE DSP effectively not to INVENT new DSP algorithms or concepts

Text Books

Main Text

- The scientist and engineer's guide to Digital Signal Processing
 - 2nd edition by Steven Smith (Sm)
- Digital Signal Processing Filtering Approach
 - 1st edition by Steve White (Wh)

Other References

- Discrete Time Signal Processing
 - 2nd edition by Oppenheim and Schafer (Op)

Course Content (tentative)

1.	What is DSP (Introduction)	(Wh CH1,Sm CH2	2) 2/20
2.	Statistics, Probability and Noise	(Sm CH 2)	2/27
3.	ADC and DAC	(Sm CH 3)	3/06
4.	Linear Systems	(Sm CH 5)	3/13
5.	Convolution	(Sm CH 6, 7)	3/20
6.	Discrete Fourier Transform	(Sm CH 8, 9)	3/27
7.	Fourier Transform Properties & FFT	(Sm CH 10,12)	4/03
8.	Z Transform	(Wh CH 4,5)	4/10
9.	Digital Filtering	(Sm CH 14)	4/17
10.	Moving Average Filter (FIR)	(Sm CH 15)	4/24
11.	Windowed Sync Filters	(Sm CH 16)	5/01
12.	Recursive Filters (IIR)	(Sm CH 19)	5/08

Subject to modification any time during the semester

Prerequisites

- A course in computer programming
- A course in basic electronics
- A course in calculus
- The mindset to learn

What is DSP

- The mathematics, algorithms, and techniques used to manipulate signals after converting them to digital form (Smith)
- Anything that can be done to a signal using code on a computer or DSP chip (White)

Examples of DSP

Relation to Other Fields

DSP Magic

- Telecommunication
 - Multiplexing
 - T-carrier systems transmit 24 voice signals (1.544Mbit/sec)
 - Compression
 - 64Kbit/sec sound (8000*8) \rightarrow 2Kbit/sec
 - Echo control
 - Antisignal generation

DSP Magic cont.

- Audio Processing
 - Music artificial reverberation
 - Speech Generation Digital Recording Vocal tract simulation
 - Speech Recognition Still far far away
 - Speaker Localization *Microphone array*

DSP Magic cont.

- Echo Location
 - Radar (Radio Detection And Ranging) energy-noise dependence, energy-length tradeoff > 100 MHz real-time speed
 - Sonar (SOund Navigation And Ranging) active (2K-40K) passive(military)
 - pulse generation, compression and noise filtering
 - Reflection Seismology echo of echo problem

DSP Magic cont.

- Image Processing
 - Medical
 - from X ray to Computed Tomography (Nobel Prize 79)
 - Space
 - Image enhancement
 - Commercial Products image compression video codecs face detection face recognition

What is a signal

- A description of how one (or more) value is changing depending on another (one or more) parameters
- Examples
 - sin(t)
 - 1,0.343,45,4343,49.032,-343.0,

What is a discrete signal

Continuous Signa 🔉

$$x(t) = \sin(2\pi f_0 t)$$

Discrete Signal

$$x(n) = \sin(2\pi f_o n t_s)$$

????? Signal

Types of Signals

			Independent		
			Discrete	Continuous	
	Dependent	Discrete	Quantized Discrete Signal (Digital Signal) x[n]	Quantized Signal $\overline{x}(t)$	
		Continuous	Discrete or Digitized Signal $\widetilde{x}[n]$	Continuous or Analog Signal $x(t)$	

Note on notation

- x[n] sample number *n* of a discrete signal (may be quantized or not)
- x_k x[n+k] step number k from current step.

General DSP System

$$y = (b_{-1}y_{-1} + \dots + b_{-m}y_{-m}) + (ax + a_{-1}x_{-1} + \dots + a_{-n}x_{-n})$$

$$y = \sum_{i=1}^{m} b_{-i} y_{-1} + \sum_{j=0}^{n} a_{-j} x_{-1}$$

Nearly ALL DSP that you need is contained in this equation

Simplest DSP systems

- y[n]=o (Broken DSP system!!)
- y[n]=x[n] (Buffer)

- y[n]=x[n-k] (Delay k steps)
- y[n]=a.x[n] (Amplifier [a>1] /Attenuator [a<1])
- y[n]=x[n]+y[n-1]

Simple Example

X1, X2, ... are names for x_{-1} , x_{-2} , etc.

X is name for x

Y is name for y, Y1 is name for y_{-1} , etc.

This is the coded DSP equation

Saving previous values, only 2 shown here

First Assignment (In lecture)

1. Change the equations for the following signals to describe the signals after they go through an ADC with a sample period of T seconds.

(a)
$$x(t) = e^{-3t}$$

(b) $x(t) = 5t^2$

2. Compute the value of the sample for n = 10 for the following signals after they have gone through an ADC with the sample time T = 0.05 seconds.

(a) $x(t) = 7\sin(25t)$

- (b) $x(t) = 2\cos(50t) 4\cos(100t)$
- 3. Compute the values of the following signals after going through an ADC with T = 0.1 s for the values of *n* from 0 to 10.

(a) $x(t) = 2\cos(10t)$

1a. $x(n) = e^{-3nT}$ 1b. $x(n) = 5(nT)^2$

2a. x(10) = -0.4642b. x(10) = -1.877

x(0) = 2.0, x(1) = 1.08

Domains

- Domain: Type of the independent parameter (ind)
- Most Useful domains:
 - Time Domain (ind = time, sample number, space)
 - Frequency Domain (ind = frequency)
 - Fourier (series, transform), DFT
 - Laplace transform
 - Z- transform
 - Time-Frequency Domain (ind=frequency+time)
 - Wavelet transform
 - Short-time Fourier transform
- In most of this course we will iterate between time and frequency domains.
- Time Frequency representation (TFR) is still an advanced topic in DSP