EE327 Digital Signal Processing ADC and DAC Yasser F. O. Mohammad

REMINDER 1 Histogram (acquired signal)

REMINDER 3: How to combine random signals

• Assume *X*, *Y* are INDEPENDENT random signals with mean μ_x , μ_y and std. dev. σ_x , σ_y :

$$\mu_{aX\pm b} = a\mu_X \pm b \qquad \qquad \sigma_{aX\pm b}^2 = a^2\sigma_X^2$$

$$\mathcal{U}_{aX\pm bY} = a\mu_X \pm b\mu_Y \qquad \qquad \sigma_{aX\pm bY}^2 = a^2\sigma_X^2 + b^2\sigma_Y^2$$

SELF Test: Prove these identities

REMINDER 4: Precision and Accuracy

- Precision = repeatability
- Accuracy = bias
 - \rightarrow systematic errors
- The two questions:
 - Repeating will remove the error
 → precision
 - Calibration will remove the error → accuracy

ADC

Sampling and Quantization

- S/H
 - Sampling
 - Discretizes the independent variable
- ADC
 - Quantization
 - Discretizes the dependent variable

Error Due To Quantization

- $\pm \frac{1}{2}LSB$
- Additive Error
- Continuous = Quantized + Quantization Error
- Uniform Distribution with mean of zero and standard deviation of (LSB/√12≈0.29LSB)
- Depends on #Bits and controls precision

Quantization Example

- Signal Amplitude = 1.0 Volt
- Uniformly random noise = 1 millivolt RMS
- 8 Bit Digitizer
- Noise = 0.255 LSB
- Noise + Quantization = $\sqrt{0.255^2 + 0.29^2} LSB = 0.386 LSB$

• 50% increase in noise

Dithering

- Add noise to reduce quantization error !!!!!
- 3005 a. Digitization of a small amplitude signal Willivolts (or digital number) 3003 3001 3001 analog signal 3002 digital signal 3000 15 20 25 10 30 40 45 50 0 5 35 Time (or sample number)

- Used when input is constant for a long time
- Quantization error is constant and additive

Sampling Example (math)

$$x(t) = \sin(2\pi f_0 t)$$

$$x[n] = \sin(2\pi f_0 n t_s)$$

$$x[n] = \sin(2\pi f_0 n t_s + 2m\pi)$$

$$x[n] = \sin\left(2\pi \left(f_0 + \frac{m}{nt_s}\right)n t_s\right)$$

$$= \sin\left(2\pi \left(f_0 + kf_s\right)n t_s\right)$$

$$\cdot \sin\left(2\pi \left(f_s\right)n t_s\right) = \sin\left(2\pi \left(f_s + kf_s\right)n t_s\right)$$

 $\therefore \sin(2\pi (f_0)nt_s) = \sin(2\pi (f_0 + kf_s)nt_s) \text{ for any integer } k$

Is this limited to sinusoidals?

- Yes and No!!!!
- Every signal can be approximated to infinite accuracy using a set of sinusoidals:
- Periodic Time Domain → Discrete Frequency Domain
- Discrete Time Domain \rightarrow Periodic Frequency Domain

		Periodicity	
Continuity		Periodic	aperiodic
	continuous	Fourier Series Aperiodic Spectrum Discrete Spectrum	Fourier Transform Aperiodic Spectrum Continuous Spectrum
	discrete	Discrete Fourier Transform Periodic Spectrum Discrete Spectrum	Discrete Fourier Transform Periodic Spectrum Continuous Spectrum

Sampling

• Our goal is to be able to reconstruct the analog signals completely from the digitized version (ignoring quantization).

Nyquist Frequency

• Half the sampling rate

• The maximum frequency representable in the discrete signal without aliasing

$$f_n = \frac{f_s}{2}$$

Aliasing

Aliasing causes information loss about both high and low frequencies

Impulse Train

• Identical information to the discrete signal

 Continuous signal can be perfectly reconstructed by passing the impulse train through a low pass filter if sampling was proper

a. Original analog signal

2

-2

Amplitude

Proper Sampling Example

Aliasing Example

DAC

- Zeroth-order hold (generates quantized continuous signal)
 - Similar to S/H
- Reconstruction Filter
 - Removes all frequencies above half the sampling rate
 - Boost the signal by the reciprocal of the zeroth order hold effect

DAC Example

Żf,

26,

SELF TEST: Why do we need an antialiasing filter even if we are not interested in signals over the Nyquest frequency?

SELF READING

Analog Filters for Data Conversion

• Single Bit Data Conversion

• Pages 48-66