EE327 Digital Signal Processing Convolution Properties Yasser F. O. Mohammad

REMINDER 1:What is convolution?

- A mathematical operation that takes two signals and produces a third one.
 - X[n]*Y[n]=Z[n]
- For us:
 - A way to get the output signal given the input signal and a representation of system function

From now one we will deal only with discrete signals if not otherwise specified

REMINDER 2: How to calculate the output

- Input length = N
- Impulse Response length = M
- Output length = N+M-1
- For example a 81 points input convolved with a 31 points impulse response gives 111 points output

REMINDER 3: Two ways to understand it

- Input Signal Viewpoint (Input Side Algorithm)
 - How each input impulse contributes to the output signal.
 - Good for your understanding
- Output Signal Viewpoint (Output Side Algorithm)
 - How each output impulse is calculated from input signal.
 - Good for your calculator

REMINDER 4: Input Side Algorithm

```
100 'CONVOLUTION USING THE INPUT SIDE ALGORITHM
110
120 DIM X[80]
                            'The input signal, 81 points
130 DIM H[30]
                            'The impulse response, 31 points
140 DIM Y[110]
                            'The output signal, 111 points
150
160 GOSUB XXXX
                            'Mythical subroutine to load X[] and H[]
170
180 FOR I% = 0 TO 110
                            'Zero the output array
190 Y(I\%) = 0
200 NEXT I%
210
220 FOR I% = 0 TO 80
                            'Loop for each point in X[]
                            'Loop for each point in H[]
230 FOR J\% = 0 TO 30
240 Y[I\%+J\%] = Y[I\%+J\%] + X[I\%] *H[J\%]
250 NEXT J%
260 NEXT I%
                            '(remember, \# is multiplication in programs!)
270
                            'Mythical subroutine to store Y[]
280 GOSUB XXXX
290
300 END
```

REMINDER 5: Output Side Algorithm

```
100 'CONVOLUTION USING THE OUTPUT SIDE ALGORITHM
110
120 DIM X[80]
                             'The input signal, 81 points
                             'The impulse response, 31 points
130 DIM H[30]
                             'The output signal, 111 points
140 DIM Y[110]
150
160 GOSUB XXXX
                             'Mythical subroutine to load X[] and H[]
170
180 \text{ FOR I}\% = 0 \text{ TO } 110
                             'Loop for each point in Y[]
190 Y[I\%] = 0
                             'Zero the sample in the output array
                             'Loop for each point in H[]
200 FOR J\% = 0 TO 30
210 IF (I\%-J\% < 0)
                             THEN GOTO 240
220 IF (I\%-J\% > 80)
                             THEN GOTO 240
230 Y(I\%) = Y(I\%) + H(J\%) * X(I\%-J\%)
240 NEXT J%
250 NEXT I%
260
270 GOSUB XXXX
                             'Mythical subroutine to store Y[]
280
290 END
```

Common Impulse Responses

- Identity System: $x[n] * \delta[n] = x[n]$
- Amplifier/Attenuator: $x[n] * k \times \delta[n] = k \times x[n]$
- Delay/Shift: $x[n] * \delta[n+s] = x[n+s]$

• Echo:
$$x[n]*(\delta[n]+\delta[n+s]) = x[n]+x[n+s]$$

Discretizing Calculus

• First Difference :

y[n] = x[n] - x[n-1]

- Discrete equivalent of differentiation
 - Discrete Derivative
- Running Sum: $y[n] = \sum_{i=0}^{n} x[i] = x[n] + y[n-1]$
 - Discrete equivalent of integration
 - Discrete Integral

Properties of Convolution

• Commutative Property: a[n]*b[n] = b[n]*a[n]

• Associative Property: $a[n]^*(b[n]^*c[n]) =$ $(a[n]^*b[n])^*c[n]$

Properties of Convolution (2)

• Distributive Property: a[n]*b[n]+a[n]*c[n] =a[n]*(b[n]+c[n])

• Central Limit Theory:

 $a[n]^*a[n]^*a[n]^*a[n]^*....=N(\mu,\sigma)$

Transference Between Input and Output

Correlation

Cross Correlation

$$c_{ab}[j] = \sum_{i=0}^{M-1} a[j]b[i-j]$$

Self Correlation

$$c_a[j] = \sum_{i=0}^{M-1} a[j]a[i-j]$$

Measures similarity (if correctly normalized!!!!)

Calculating Correlation

Convolution without flipping second signal

Just Touching Filters

- Major Types
 - Low Pass Filter
 - High Pass Filter

Low Pass Filters

FIGURE 7-4

Typical low-pass filter kernels. Low-pass filter kernels are formed from a group of adjacent positive points that provide an averaging (smoothing) of the signal. As discussed in later chapters, each of these filter kernels is best for a particular purpose. The exponential, (a), is the simplest recursive filter. The rectangular pulse, (b), is best at reducing noise while maintaining edge sharpness. The sinc function in (c), a curve of the form: sin(x)/(x), is used to separate one band of frequencies from another.

High Pass Filters

FIGURE 7-5

Typical high-pass filter kernels. These are formed by subtracting the corresponding lowpass filter kernels in Fig. 7-4 from a delta function. The distinguishing characteristic of high-pass filter kernels is a spike surrounded by many adjacent negative samples.

Causal Systems (from Impulse Response)

FIGURE 7-6

Examples of causal signals. An impulse response, or any signal, is said to be *causal* if all negative numbered samples have a value of zero. Three examples are shown here. Any noncausal signal with a finite number of points can be turned into a causal signal simply by shifting.

Zero, Linear and nonlinear Phase

Systems

Symmetric around o

FIGURE 7-7

Examples of phase linearity. Signals that have a left-right symmetry are said to be *linear phase*. If the axis of symmetry occurs at sample number zero, they are additionally said to be *zero phase*. Any linear phase signal can be transformed into a zero phase signal simply by shifting. Signals that do not have a leftright symmetry are said to be *nonlinear phase*. Do not confuse these terms with the *linear* in linear systems. They are completely different concepts.

Symmetric around another point

