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EE327 Digital Signal Processing
Convolution Properties




REMINDER 1:What is convolution?

A mathematical operation that takes two signals and
produces a third one.

e X[n]*Y[n]|=Z|n]

For us:

e A way to get the output signal given the input signal and a
representation of system function

From now one we will deal only with discrete signals if not
otherwise specified



- REMINDER ZM

output

Linear
X[n] —>{ System [ 3 y[n]
h[n]

X[n] * h[n] = y[n]

Input length = N
Impulse Response length = M

Output length = N+M-1

For example a 81 points input convolved with a 31 points impulse
response gives 111 points output



-REMINDER 3: Two ways to

understand it
Input Signal Viewpoint (Input Side Algorithm)

e How each input impulse contributes to the output signal.
e Good for your understanding

Output Signal Viewpoint (Output Side Algorithm)
e How each output impulse is calculated from input signal.
e Good for your calculator
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REMINDER 4: Input Side Algorithm

100 'CONVOLUTION USING THE INPUT SIDE ALGORITHM

110

120 DIM X[80] 'The input signal, 81 points

130 DIM H[30] 'The impulse response, 31 points

140 DIM Y[110] '"The output signal, 111 points

150 '

160 GOSUB XXXX 'Mythical subroutine to load X[ | and HJ ]
170 '

180 FORI% =0TO 110 'Zero the output array

190 Y(I%) =0

200 NEXT I%

210 '

220 FOR 1% =0 TO 80 'Loop for each point in XJ |

230 FOR J% =0TO 30 '"Loop for each point in HJ |

240 Y[I%+J%] = Y[I%+]%] + X[1%]*¥H[]%]

250 NEXT J%

260 NEXT I% '(remember, ¥ 1s multiplication in programs!)
270 '

280 GOSUB XXXX 'Mythical subroutine to store Y[ |

290 '

300 END



~ REMINDER 5: Outpu

Algorithm

100 '"CONVOLUTION USING THE OUTPUT SIDE ALGORITHM

110
120 DIM X[80]
130 DIM H[30]
140 DIM Y[110]

150
160 GOSUB XXXX

170

180 FOR 1% =0 TO 110

190 Y[I%] =0

200 FOR J% =0 TO 30

210  TF (1%-J% < 0)

220 IF (1%-1% > 80)

230 Y(I%) = Y(I%) + H(J%)
240 NEXT J%

250 NEXT 1%

260

270 GOSUB XXXX

280

290 END

'The input signal, 81 points
'The impulse response, 31 points
'"The output signal, 111 points

'Mythical subroutine to load X[ ] and HJ ]

'Loop for each point in Y[ ]

'Zero the sample in the output array
'Loop for each point in H[ ]

THEN GOTO 240

THEN GOTO 240

* X(1%-J%)

'Mythical subroutine to store Y| ]
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Common Impulse Responses
Identity System: x| nlx 5[n] — x[n]

Amplifier/Attenuator: X n|*k x 5[n' = X [n'

Delay/Shift: x_n_*&[n+s_ :x[n+s_

Echo:  X[n]*(S[n]+&[n+s])=x[n]+x[n+s]
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Discretizing Calculus

[OGgmlsga) | |
First Difference : £ ’r |
yIn] = x{n]—x{n—1] SEEEENE.
Discrete equivalent of differentiation = ° 7 7 sepemae © 7 "

e Discrete Derivative

Running Sum:

=500

yinl=2 dil=xnl+yin-1 [ L7 I N ||
i=0 NEEREEEn

e Discrete equivalent of integration “ _f_ﬂ_f_u_f__f
e Discrete Integral REERERERE

o 10 20 30 40 50
Sample number
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Properties of Convolution
Commutative Property: aln] —>{ bln] |—> yln]
a[n]*b[n] = b[n]*a[n] THEN

b[n] ——{ a[n] |——> yln]

IF

Associative Property:

x[n] ———hy[n] > Iy[n] ——> y[n]
a[n]*(b[n]*c[n]) = .
(a[n]*b[n])*c[n] PRI oy R o B
ALSO

x[n] ———>| h;[n] % hy[n] ——> y[n]




> h[n]

3(—9—» yln]

> h,[n]

Properties of Convolution (2)
Distributive Property: ¥
a[n]*b[n] - a[n]*c[n] = x[n] ——
a[n]*(b[n]+c[n]) .

X[n] ———>

h,[n] +

h,[n] ——— y[n]

Central Limit Theory:

a[n]*a[n]*a[n]*a[n]*....= N (x&,0)



Transference Between Input and Output

IF
X[n] —{ h[n] |——> Yyln]
Linear Liteer
THEN

X [n]—> h[n] |——> Y'[n]
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Correlation

Cross Correlation

M -1
C[i]= 2 alilbli- j]
i=0 ;
Self Correlation £ Lh
. - - EEAEWIE
c,[i1=D aljlali-j] .
1=0 8 ;
|

0 20 30 4 50 & T
Sample number (or tme)

Measures similarity (if correctly normalized!!!!)



Calculating Correlation

Convolution without flipping

second signal L APPSRy I |




Just Touching Filters

* Major Types

e L.ow Pass Filter

e High Pass Filter



Low Pass Filters
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FIGURE 74 c. Sinc
Typical low-pass filter kernels. Low-pass 0.3
filter kernels are formed from a group of
adjacent positive points that provide an ™
averaging (smoothing) of the signal. As =02 s
discussed in later chapters. each of these filter = (R
kernels is best for a particular purpose. The Fo01 - =
exponential (a). is the simplest recursive . -
filter. The rectangular pulse, (b). 15 best at - -
reducing noise while maintaining edge 0-0-pmmmn =Sy R P
sharpness. The sinc function in (c), a curve of - -
the form: sin(x)/(x}. is used to separate one o1
band of frequencies from another. 20 -15 -0 -5 0 5 015 20



High Pass Filters
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FIGURE 7-5
Typical high-pass filter kernels. These are 1.00
formed by subtracting the corresponding low- - ]
pass filter kernels in Fig. 7-4 from a delta Z
function. The distingmshing characteristic of E.0.50
high-pass filter kernels is a spike surrounded =
by many adjacent negative samples.
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Causal Systems (from Impulse Response)
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a. Cansal b. Caupsal
0.3 0.3
4] [ ] Y,
= 02 =02 .
£ ] E= [ ]
E . E .
< 0.1 u < 01 -
n
I... -
u
0, 1 LU T T Q.D-IIII-IIIIIIIIIIIIII"___.;__;I-E'..-..
ul
0.1 01
200 15 -0 50 5 10 15 W 20 15 -0 -5 0 5 1 15 10
Sample mumber Sample ommber
0.4 . r y
c. Noncansal
FIGURE 7-6 0.3
Examples of causal signals. An impulse
response, or any signal, is said to be causal if =
all negative numbered samples have a value of 2 0z =
zero. Three examples are shown here. Any = [
noncausal signal with a finite number of 201 - =
points can be turned into a causal signal . -
simply by shifting.
¥ o) = L e | e el L
"ma" "u"
01
20 415 -0 -5 0 5 D15 20




~Zero, Linear and nonlinear Phase

Systems

Symmetric around o Symmetric around another point

0.4 . . . 0.4 . r .
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FIGURE 7-7 c. Nonlinear phase | 1
Examples of phase lineanity. Signals that have . | F | ASYmmetI'IC
a left-right symmetry are said to be [inear .
phase. If the axis of symmetry occurs at
sample mumber zero, they are additionally said =202 T
to be zero phase. Any linear phase signal can £ u
be transformed info a zero phase signal simply g . u
by shifting. Signals that do not have a left- = 0.1 =
right symmetry are said to be nonlinear 'l._
phase. Do not confuse these terms with the (0. - o o e o e LT T S—.
[fnear in linear systems. They are completely
different concepts. o




