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REMINDER 1: Common Impulse 
Responses
 Identity System: 

 Amplifier/Attenuator:

 Delay/Shift:  

 Echo:      
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REMINDER 2: 
Discretizing Calculus
 First Difference :  

 Discrete equivalent of differentiation
 Discrete Derivative

 Running Sum:  

 Discrete equivalent of integration

 Discrete Integral
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REMINDER 3: Properties of 
Convolution
 Commutative Property:

 Associative Property:
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Now What?
 We can analyze systems in time domain using impulse 

response and convolution

 We will look at how to do the same thing in the
frequency domain using Fourier analysis and just
multiplication.

 Why?
 More insight (sometimes)

 Faster (sometimes)



What is a transform
 A multi-input multi-output function

 We use it to see the data from a different prespective

 Examples:
 Fourier transform

 Laplace transform

 Z transform

 Discrete Cosine Transform 

 etc



Types of Fourier Decompositions



Fourier Decomposition

Periodicity
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Continuous Spectrum

discrete Discrete Fourier Transform
DFT

Periodic Spectrum
Discrete Spectrum

Discrete Time Fourier Transform
DTFT

Periodic Spectrum
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 Periodic Time Domain  Discrete Frequency Domain

 Discrete Time Domain  Periodic Frequency Domain



Finite or infinite
 Sine/cosine waves are infinite

 In DSP we have finite signals

 Finite signals cannot be decomposed to infinite parts!!

 What can we do?
 Pad by zeros to infinity

 Use DTFT (by the end of this course)

 Assume the signal is periodic with period N
 Use DFT (easier)



A point to remember
 When using DFT we assume that the signal we

decompose is infinite and PERIODIC and that the
period is N



Discrete Fourier Transform

Usually N is a power of 2 (to use FFT)



Notation
 Time Domain Signal: 

 Lower case letters (e.g. x,y,z) 

 Complex Frequency Domain Signal: 
 Upper case letters (e.g. X, Y, Z)

 Real part of the frequency domain signal:
 ReX, ReY, ReZ

 Imaginary part of the frequency domain signal:
 ImX, ImY, ImZ



Example DFT

Time Domain : 0N

Frequency Domain:
k :  0N/2
f: 0 0.5
ω: 0π

f  is a fraction of fs



How to use the three notations
 x[n]= cos(2πkn/N)

 x[n]= cos(2πf  n)

 x[n]= cos(ω n)

 This means:

 f=k/N

 ω=2πf



DFT basis functions
 ck[n]= cos(2πkn/N)

 sk[n]= sin(2πkn/N)



A puzzle for you
 Input is N points

 Output is 2*(N/2+1) = N+2
Where  did the extra two points come from???

 Solution

 ImX[0]=ImX[N/2]=0

 Why?
 They represent a signal of all zeros 

that cannot affect the time domain



Synthesis Equation
 From Frequency domain to Time domain



Calculating Inverse DFT



Why the 2/N, 1/N factors
 Frequency domain signals in DFT are defined as spectral density

 Spectral Density: How much signal (amplitude) exists per unit bandwidth

 Total bandwidth of discrete signals = N/2 (Nyquist)
 Bandwidth of every point is 2/N except first and last



Forward DFT
 Three solutions

 N equations in N variables

 Correlation

 Fast Fourier Transform



DFT by N equations

 Each value of i gives one equation.

 Remember that ImX[0]=ImX[N/2]=0

 We need N more equations 

 Hence, each of ReX and ImX will be N/2+1 as expected

 All equations must be linearly independent



DFT by correlation
 Find the correlation between the basis function and the signal

 The average of this correlation is the required amplitude.

 For this to work all basis functions must have zero correlation.

 Sins and Cosines of different frequency have zero correlation



DFT by Correlation Example

Correlation is 0.5



DFT by Correlation Example 2

Correlation is zero



Calculating DFT



Duality

 sine in the time domain  single point in frequency domain

 sine in the frequency domain  single point in time domain

 Convolution in time domain multiplication in frequency domain

 Convolution in frequency domain multiplication in time domain



Rectangular and Polar Notations



Conversion Formulas



Example



When to use what?
 Rectangular form is usually used for calculations 

 Polar form is usually used for display

 Sinusoidal fidelity means that the only changes possible 
to a sinusoidal are phase shifts and amplitude scaling

 These are clear in the polar form



Conversion algorithm



Notes on Polar form
 As defined all phases are in radians not degrees

 Remember not to divide by zero when ReX[i]=0

 Calculating phase:

ReX ImX Correction

+ + 0

+ - 0

- + +π

- - -π



Notes on Polar form
 Very small amplitudes cause large noise in the phase 

 (-π π)

 Phase wrapping (2 π ambiguity)

 Solution: unwrapping



Apparent discontinuity of phase


