
Yasser F. O. Mohammad

REMINDER 1: Logical Operation
 AND destination, source

 OR destination, source

 XOR destination, source

 NOT destination

REMINDER 2: Shift and Rotation
Instructions

Left Right

Logical SHL SHR

Arithmetic SAL SAR

 S* destination, count
 Count can be immediate or CL (mod 32)

 SHL, SAL are identical

 SAR sign extends the shifted bit
 SHR zero extends the shifted bit

 The bit that goes out is written to CF

Who can you call?*
 System

 Low Level
 Depends on OS
 Fastest
 e.g. using INT 21H in DOS

 Runtime Libraries (e.g. C)
 Higher Level
 OS independent (usually)
 Slightly slower
 e.g. calling printf from your assembly code

 Runtime libraries use system calls to achieve their goals

Why Performing System/Library Calls? *
 Input / Output

 Interacting with Files

 System Services (e.g. Dynamic Memory Allocation)

System calls in DOS*
 INT 21H

 Service number is put in AH

 Parameters are passed using registers

 Pointers to large parameters are passed in registers

 Return value can be read from registers (AL)

 Supports only 16-bit code

 Find them all in DOS Programmer’s Reference

Example DOS calls*
 Function 1- Character input with echo

 Action: Reads a character from the standard input
device and echoes it to the standard output device.
If no character is ready it waits until one is available.
I/O can be re-directed, but prevents detection of OEF.

 On entry: AH = 01h

 Returns: AL = 8 bit data input

Example DOS calls*
 Function 2 - Character output

 Action: Outputs a character to the standard output
device. I/O can be re-directed, but prevents detection
of 'disc full'.

 On entry:

AH = 02h
DL = 8 bit data (usually ASCII character)

 Returns: Nothing

Example DOS calls*
 Function 09- Output character string

 Action: Writes a string to the display.

 On entry:
AH = 09h
DS:DX = segment:offset of string

 Returns: Nothing

 Notes: The string must be terminated by the $ character (24h),
which is not transmitted. Any ASCII codes can be embedded
within the string.

Example DOS calls*
 Function 0Ah - Buffered input
 Action: Reads a string from the current input device up to and including an ASCII

carriage return (0Dh), placing the received data in a user-defined buffer

 On entry:
AH = 0Ah
DS:DX = segment:offset of string buffer

 Returns: Nothing

 Notes: The first byte of the buffer specifies the maximum number of characters it can
hold (1 to 255). This value must be supplied by the user. The second byte of the buffer is
set by DOS to the number of characters actually read, excluding the terminating
RETURN. If the buffer fills to one less than its maximum size the bell is sounded and
subsequent input is ignored.

If a CTRL-C is detected an INT 23h is executed. Normal DOS keyboard editing is
supported during input

Example DOS calls*
 Function 0Bh - Get input status
 Action: Checks whether a character is available from the standard

input device. Input can be redirected

 On entry:
AH = 0Bh

 Returns:
AL = 0 if no character available
AL = 0FFh if character available

 Notes: Notes: if an input character is waiting this function continues to
return a true flag until the character is read by a call to function 1, 6, 7,
8 or 0Ah.

Example DOS calls*
 Function 4Ch - Terminate program with return code

 Action: Terminates execution of a program with return to COMMAND.COM or
a calling routine, passing back a return code.

 On entry: AH = 4Ch
AL = Return code (Error level)

 Returns: Nothing

 Notes: This is the approved method of terminating program execution.
Conventionally a return code of zero indicates success, any other value failure.
Standard DOS return codes are:

0: Successful operation
1: CTRL-BREAK termination
2: Critical error terrnination
3: Terminated and stayed resident

Return code values can be used at the discretion of the programmer (avoiding
codes 1 to 3).

Example DOS program*
.model small
.Data
str2in DB 20,0
str2out DB 20 DUP(?)
.Code
_start:

mov ah, 0ah ; read a string to str2in from standard input
mov dx, offset str2in
int 21h

mov bx, 0 ; get the real number of input characters to bx
mov bl, byte ptr [strin+1]
add bx, dx ; add number of read characters to the string pointer
mov byte ptr[bx+2],’$’ ; add a ‘$’ after the string to prepare for function 09h

mov ah, 09h ; write the string to standard output
mov dx, offset str2out
int 21h

mov ah, 4ch
int 21

END

LINUX system calls*
 INT 80H
 System call value is place in EAX

 Parameters are passed in registered if < 6
 EBX (first), ECX (second), EDX (third), ESI (fourth), EDI (fifth)

 Parameters are passed in the stack if >5

 Notice that MASM cannot be used with LINUX
 Usually NASM is used and it has completely different

syntax

WINDOWS system calls
 CALL function

 Uses stdcall convention for parameter passing

 16-bit and 32-bit versions are available (64-bit recently)

 Usually done using INVOKE

 The ones we will used are defined in Kernel32 library

What is a calling convention? *
 An agreement about:

 How parameters are passed from caller to callee?

 Who is responsible of saving registers used?

 Who is responsible of cleaning parameters from stack (if
needed) upon return?

 What is the order of the parameters in the stack (or
register file)?

 How to name procedures?

Most Important calling conventions*
 C

 THISCALL

 STDCALL

 FASTCALL

C
(cdecl in C, C in assembly) *

 Default for C functions and global C++ functions

 Arguments are pushed on the stack in reverse order.

 The caller pops arguments after return.

 Primitive data types, except floating point values, are
returned in EAX or EAX:EDX depending on the size.

 Float and double are returned in fp0, i.e. the first
floating point register.

LINUX and WINDOWS compilers differ in how to
handle returning class objects

ThisCall
(thiscall in assembly) *

 Used with C++ member functions that take fixed number of
parameters. Functions taking variable number of parameters always
uses C calling convention with this pointer passed as first in stack

 this pointer is passed in ECX
 The callee pops arguments after return.
 Primitive data types, except floating point values, are returned in

EAX or EAX:EDX depending on the size.
 Float and double are returned in fp0, i.e. the first floating point

register.

LINUX and WINDOWS compilers differ in how to handle
returning class objects

STDCALL
(stddecl in C, stdcall in assembly) *

 Used for ALL Win32 API functions

 Arguments are pushed on the stack in reverse order.

 The callee pops arguments after return.

 Primitive data types, except floating point values, are
returned in EAX or EAX:EDX depending on the size.

 Float and double are returned in fp0, i.e. the first
floating point register.

LINUX and WINDOWS compilers differ in how to
handle returning class objects

FASTCALL
(fastdecl in C, fastcall in assembly) *
 Similar to stdcall but with first two parameters passed

in registers ECX and EDX

 Rarely used

How to call a windows system
function?
1. Declare it using PROTO

2. Call it using INVOKE

3. When linking add the needed library (kernel32.lib)
to the linker command line

Declaring using PROTO
 label PROTO [distance] [langtype] [,[parameter]:tag]

 Distance:

 NEAR32

 NEAR

 FAR

 Langtype

 C (An underscore is automatically added to function name)

 STDCALL

 FASTCALL

 TAG= data type

Examples

Calling using INVOKE
 INVOKE label [, parameter]

CASE STUDY:
Console I/O using Kernel32
 Input/output from all devices can be handled as file

I/O:
 Keyboard/display

 Serial port

 MODEM

 To access a file you need a HANDLE to it

 With the handle you can READ, WRITE, and CLOSE
files (among other things)

How to do console I/O
 Get a handle to the console using GetStdHandle:

 STDIN for input (-10)

 STDOUT for output (-11)

 Read using ReadFile

 Write using WriteFile

Writing a string

Full example
 Reading a string from the keyboard, converting it to

lower case and putting it back to the screen

 SEE the text book page 423

Full example 2
 Input output procedures in IO.ASM (as written by

Detmar)

 See text book page 425

File I/O
 CreateFile

 Creates or opens a file

 Has two versions (as many Win32 functions)

 CreateFileA: strings are using ASCII

 CreateFileW: strings are using UNICODE

 CloseHandle

 Closes a file opened by CreateFile

Examples
 Reading a file and displaying it to console

 Getting text from user and storing it into a file

 Text book pages 429, 433

How to get help
 MSDN is the primary source of information about WIn32

functions

 MASM32 has built in libraries and include files having all
the prototypes of standard Win32 functions and ALL
standard C functions as well.

 Look at IO.ASM, IO.H to get some idea about the details of
using these prototypes

You can use printf in assembly

