
Yasser F. O. Mohammad

REMINDER 1: Unconditional Jmp
 Jmp statement
 Jmp offset

 Offset = register, or memory location (signed)
 Offset is added to the address of next instruction

 Jmp Types:
 Relative Jump = Interasegment Jump = changes EIP
 Far Jump = Intersegment Jump = changes CS, EIP
 Task Switch = Jump to a different task (privileged)

Offset Type Offset Size Maximum offset

Relative short 4 bytes -2147483648  2147483647

Relative near Single byte -128127

Register indirect 4 bytes -2147483648  2147483647

Memory indirect 4 bytes -2147483648  2147483647

Why do we need relative short jmp?

REMINDER 2: Conditional Jump
 J* targetStatement

 * identifies the condition to take the jump

REMINDER 3: LOOP instruction
 loop statement

 Statetement must be short distance from the instruction (-
128 127 bytes)

 Does the following:
 ECX=ECX-1
 If ECX==0 then continue to next statement
 If ECX ≠ 0 then jump to statement

 Similar to a high level For-Loop with count in ECX
for(; ECX>0; ECX--){

.

.
}

What is the stack?
 A data structure with two operations:

 push: adds on the top of the stack
 Pop: pops from the top of the stack

 Allocated using .STACK in MASM
 Of course the memory is still accessible as general memory

 Accessed by ESP (usually!!)

 Used for parameter passing during function calls
 Automatically manage ESP

 Can be used as you see fit
 You manage everything

.STACK
 Allocates a space in memory for the stack

 ESP points to the byte just above the allocated space
for the stack.

 In general ESP points to the location of the last byte
already written to the stack.

Push instruction
 push source

1. Decrements ESP by the size of source.

2. Copies source to the location pointed to by ESP.

It grows downward !!!!

Pop instruction
 pop source
 Copies source-size bytes from [ESP] to source.

 Increments ESP by the size of source.

What can we push and pop

Flags to/from the stack
 pushf/popf

 Pushes/pops the flags register (2 bytes)

 pushfd/popfd

 Pushes/pops the extended flags register (4 bytes)

All registers to/from the stack
 pusha

 Pushes all registers in this order:

 AX, CX, DX, BX, SP, BP, SI, DI

 SP value pushed is the value BEFORE pushing AX

 popa

 Pops all registers in this order:

 DI, SI, BP, SP(Discarded), BX, DX, CX, AX

 SP value is discarded after pushing not to modify
current SP

All registers to/from the stack
 pushad

 Pushes all registers in this order:

 EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

 ESP value pushed is the value BEFORE pushing EAX

 popad

 Pops all registers in this order:

 EDI, ESI, EBP, ESP(Discarded), EBX, EDX, ECX, EAX

 ESP value is discarded after pushing not to modify
current ESP

Note about pushing
 Some operating systems including Windows require

that parameters for functions are double word-aligned.

 To be safe push and pop DWORDs not WORDs

Procedures
 The way to implement functions and function calls in

IA32

 Always comes in the code segment (after .CODE)

 Has the following anatomy:

label PROC [[distance]] [[langtype]] [[visibility]] [[<prologuearg>]] [[USES
reglist]] [[, parameter [[:tag]]]]...

statements
[ret]

label ENDP

How to call a procedure
 call procedureLabel

 Does not by itself do any parameter passing

 You do parameter passing yourself!!!!!!

 Does two things

1. Pushes the return address to the stack

2. Jumps to the address of the procedure

 As in JMP, ±32K displacement is added to EIP/IP to do
the jump

How long is the return address
 NEAR

 IP (WORD)

 NEAR32

 EIP (DWORD)

 FAR

 8086: CS:IP (2 WORDs)

 80386: CS:EIP (1 WORD+1 DWORD)

Examples NEAR/FAR

Example NEAR32
Before

After

Indirect call
 CALL register

 CALL memaddress

 Calls the procedure which address is referenced

 Near version uses DWORD registers and addresses as
new EIP

 Far version can only use memory because it needs 6
bytes!!

How to pass parameters
 Push them to the stack before CALL

 Put them to known memory location before CALL

 Put them to registers before CALL

Returning from Procedures
 ret

 Returns control to the caller

 You must return the return value yourself!!!

 Does one thing

1. Pops the return address from the stack to IP, EIP, CS:IP

 This is a JMP

Returning with cleaning
 ret count

 Count is an immediate

 Indicates how many bytes the ESP should be
incremented with AFTER the return

 Used to discard input parameters on the stack

How to return a value
 Push it to the stack

 Leave it in a known memory location

 Leave it in a known register

Example

Declaration

Call

How to put procedures in a
different file
 Declare them PUBLIC in the defining file

 PUBLIC proc_name1, [proc_name1,….]

 E.g. PUBLIC Initialize

 Declare them external in the calling file

 EXTRN proc_name1:Type, [proc_name1:Type,….]

 E.g. EXTRN Initialize:NEAR32

Example

Parameter passing
 Types of parameters:

 In: Pass-by-Value
 In-out: Pass-by-Reference

 Types of variables:
 Local: specific to the procedure (visible only inside)
 Global: visible outside

 Simplest parameter passing approach
 Use registers
 Use them as global variables

 Simplest local variable approach
 Use registers

Example
 Passing two DWORDS:

 You must readjust this ESP (by subtracting 8) before
returning from the procedure. Why? How?

Stack for Parameter Passing
 Usually, we use EBP to access parameters/variables on

the stack

Stack for Local Variables

Allocate
Local
Variables

Point
To
Params

Save
Flags

Entrance Code

Exit Code

int GCD(int , int);

Stack usage with params and locals

Typical Function (PROC)

IA32 support for compilers
 enter localBytes, nestingLevel

 Nesting level = zero

 Nesting Level > zero

 Push ESP from nestingLevel-1 to 0 to the stack

 Allows nested blocks access to local variables of their parents

IA32 Support for compilers 2
 leave

 Usually used just before returning (ret)

 Does the following:

 Reverses the effects of enter on the stack

MASM support for you
 INVOKE procName, param1, param2, ….

 A directive not an instruction. Even if it does not start with
a ‘.’

 Does:
PUSH paramn

.

.

.

PUSH param1

CALL procName

Recursion
 A function directly or indirectly calling itself.

 This is one motivator to store local variables and
parameters on the stack. Why?

 This is the most common reason for stack overflow
problems

Towers of Hanoi puzzle

 Move all disks from A to B one at a time without ever
having a disk under a larger one. C can be used as
temporary location.

Towers of Hanoi Solution
 If N.Disks==1

 Move it to B

 If N.Disks>1

 Move largest N.Disks-1 to C

 Move the remaining disk (on A) to B

 Now solve the problem of moving N.Disks-1 from C to B
using A as a temporary location

Pseudo code of Towers of Hanoi

Assembly Solution Page 1

Assembly Solution Page 2

Interrupts*
 Hardware Interrupts

 Requested by hardware to avoid polling

 Controlled by the Programmable Interrupt Controller PIC

 I flag controls if the processor accepts interrupts

 Software Interrupts

 Requested in the program

 Simulates interrupts

 Has nothing to do with the PIC

How ALL Interrupts are handled*
 There are 256 different interrupt types (numbers).

 First 1 or 2K memory locations contain interrupt vectors.

 Interrupt vector of interrupt X: the address of the interrupt
handling routine (IHR) to be called when X is raised

 Interrupt number Interrupt vector (IV)

 Real: Multiply by 4 00:[IV]=address of IHR

 Protected: Multiply by 800:[IV]= descriptor of the IHR address

INT*
 INT number

1. Calculate IV=number * 4 or 8 (Real/Protected)

2. Push flags

3. Clear T and I flags (Traps and hardware interrupts)

4. Push CS

5. Read new CS from CS:[IV]

6. Push IP/EIP onto the stack

7. Read new IP/EIP from CS:[IV+2]

8. Jump to new CS:IP/EIP

Used for system calls (2 bytes) instead of FAR calls (5 bytes)

Common Interrupts*

IRET/IRETD*
 IRET

1. POP IP

2. POP CS

3. POP flags

 IRET=POPF+FAR RET

 IRET is used in real mode

 IRETD is used in protected mode (POPs EIP)

INTO*
 INTO

 If OF=1 does INT 4 otherwise nothing

 Used to check for overflows

How to call without a CALL
 S/360 (1960)

 32 GPRs
 Call is done as follows:

 Allocate space to save 32 GPRs
 Copy all GPRs to it
 Put its address in R13
 Copy ProcAddress to R15
 Jump and Link (copies IP to R14 then JMP R15)

 Return is done as follows:
 JMP R14

 Parameter Passing is done as follows:
 Put parameters in memory
 Make a list of pointers to parameters in memory at address ADDR
 MOV R1,ADDR
 Call

 NO recursive calls!!

