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REMINDER 1: Velocity Kinematics
 Relation between end effector’s linear and angular 

velocities and joint velocities.

 This is defined by the Jacobian (one of the most important 
concepts in robot motion)

 Steps:

 Understand velocity and its transfer with moving frames!!

 Derive Jacobian

 Understand singularities



REMIDNER 2: Angular Velocity: 
FIXED AXIS
 Angular Velocity (describes a frame)

 Linear  velocity (describes a point)

 Angular  velocity if fixed for the whole 
body

 Linear velocity depends on the 
distance between the point and the 
axis of rotation

 How to represent angular velocity?
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REMINDER 3: Linear Velocity of a 
Point in a moving frame
 Translating And Rotating:
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What are we after?
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The angular Jacobian Jω
 Angular velocities are added as free vectors

 We can find ωn by adding all ωi’s from the base to end 
effector

 Now                  where k is a unit vector in direction of 
rotation axis 

 Using DH parameter’s convention:
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Jω (Prismatic Joint)
 Θi is constant

 Θi is variable
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Jω (Revolute Joint)
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Angular Velocity of End Effector
 We know that:

 If all joints are revolute:

 If all of the m are prismatic

 In general
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Now Jω
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Linear Velocity and Jacobian
 By chain Rule of Differentiation:

 By Jacobian definition
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What is the origin of frame n in 0



Now Differentiate
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 If ONLY Joint i is moving
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Prismatic Joint case

 If ONLY Joint i is moving


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Prismatic Joint
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Revolute Joint case

 If ONLY Joint i is moving
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 is constants
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Revolute Joint



More Details



So for Revolute Joint



Putting It all Together



The whole Jacobian (METHOD 1)
 Revolute Joint

 Prismatic Joint



Where to get Them?
 Z from the third column of T

 O from the fourth column of T
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The whole Jacobian (METHOD 2)*
 Revolute Joint

 Prismatic Joint
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Example 1 (Planar RR)



Jacobian of Arbitrary Point



Example 2: SCARA

From A1A2



Bit of Terminology

  ˆS k k



Jacobian at End Effector

From Osama Khatib



Jacobian in a different frame

From Osama Khatib

det    det    i jJ J



Cross Product in a different frame

From Osama Khatib



Jacobian of End effector in first 
frame

From Osama Khatib



Example

From Osama Khatib



Example

From Osama Khatib



Example

From Osama Khatib



Singularity
 Configurations in which the rank of the Jacobian is

less than 6



How to find singularities?
1. Find the determinant of J and equalize it with zero

2. Find the QR decomposition of J and find the rank 
(does not give the singularity configuration)

3. For 6-DOF robots with wrist, find the determinant of 
the wrist alone and the arm alone. All singularities 
found are robot singularities.



Wrist Singularities

 Whenever z3 and z5 are aligned

 Prove it



Elbow Singularity



Resolved Motion Rate Control 
(Whitney 1972)

From Osama Khatib



RMRC

From Osama Khatib



Jacobian Rank
 For RMRC to work J must be invertible

 J is 6×n and is invertible only if n = 6 and full rank

 What can we do if n>6????????



How to calculate inverse Jacobian

   

 

 

1 1

1

1

T T

T T T T

T T

T T

Jq

J J Jq

J J J J J J Jq

J J J q

q J

J J J J











 






















How to calculate J+

 Most difficult method (from definition):

 Simplest Method (SVD):
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Manipulability
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If the robot is not redundant  (n<=6)

det   J 



Example (Planar RR)



Velocity-Force Relation

From Osama Khatib



Velocity Force Duality

From Osama Khatib



Velocity Force Duality
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Statics

From Osama Khatib



Internal Force Elimination

From Osama Khatib



How to do the elimination

From Osama Khatib



Example

From Osama Khatib


